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BACKGROUND: Non-surgical bleeding (NSB) due to angiodysplasia is common in left ventricular assist
device (LVAD) patients. Thrombin-induced angiopoietin-2 (Ang-2) expression in LVAD patients leads to
altered angiogenesis and is associated with lower angiopoietin-1 (Ang-1) and increased NSB. However,
the mechanism for decreased Ang-1, made by pericytes, is unknown and the origin of thrombin in LVAD
patients is unclear. We hypothesized that high tumor necrosis factor-α (TNF-α) levels in LVAD patients
induce pericyte apoptosis, tissue factor (TF) expression and vascular instability.
METHODS: We incubated cultured pericytes with serum from patients with heart failure (HF), LVAD or
orthotopic heart transplantation (OHT), with or without TNF-α blockade. We performed several
measurements: Ang-1 expression was assessed by reverse transcript-polymerase chain reaction (RT-PCR)
and pericyte death fluorescently; TF expression was assessed by RT-PCR in cultured endothelial cells
incubated with patient plasma with or without TNF-α blockade; and TF expression was assessed in
endothelial biopsy samples from these patients by immunofluorescence. We incubated cultured endothelial
cells on Matrigel with patient serum with or without TNF-α blockade and determined tube formation by
microscopy.
RESULTS: Serum from LVAD patients had higher levels of TNF-α, suppressed Ang-1 expression in
pericytes, and induced pericyte death, and there was accelerated endothelial tube formation compared with
serum from patients without LVADs. TF was higher in both plasma and endothelial cells from LVAD patients,
and plasma from LVAD patients induced more endothelial TF expression. All of these effects were reversed or
reduced with TNF-α blockade. High levels of TNF-α were associated with increased risk of NSB.
CONCLUSIONS: Elevated TNF-α in LVAD patients is a central regulator of altered angiogenesis, pericyte
apoptosis and expression of TF and Ang-1.
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Non-surgical bleeding (NSB) due to angiodysplasia
is common among patients with continuous-flow left
ventricular assist devices (LVADs).1,2 However, the under-
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lying mechanism remains unknown. Angiodysplasia is
associated with endothelial proliferation and decreased
vessel coverage by pericytes,3,4 non-endothelial vascular
cells that support the endothelium. Pericytes produce
angiopoietin-1 (Ang-1), an agonist of Tie-2,5 which
promotes vessel stability.6 Ang-1 is antagonized by
angiopoietin-2 (Ang-2), which is synthesized by endothelial
cells7 in response to thrombin.8,9 Ang-2 induces endothelial
destabilization and altered vessel growth.10,11 We have
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shown that Ang-1 is decreased in LVAD patients,12

although the underlying mechanism is unknown. We have
also shown that thrombin-dependent overexpression of
Ang-2 in LVAD patients induces altered angiogenesis and
is associated with NSB.12 Because Ang-1 and Ang-2 are
regulators of vascular growth, determining the mechanisms
underlying the loss of Ang-1 and overexpression of Ang-2
in LVAD patients is critical to understanding LVAD-related
angiodysplasia and NSB.

Tumor necrosis factor-α (TNF-α) induces pericyte
apoptosis,13,14 promotes altered angiogenesis in synergy
with Ang-2,15,16 and regulates Ang-2 expression.17 TNF-α
also induces endothelial expression of tissue factor (TF,
Factor III),18 which leads to thrombin production and is
augmented in synergy with thrombin itself.19,20 Plasma
TNF-α21–25 and TF26 are elevated after LVAD implantation
and experts have theorized that TF may drive angiodysplasia
in LVAD patients through thrombin and Ang-2.27 However,
the interplay of TNF-α with angiogenic and coagulation
pathways in LVAD patients is not known. We hypothesized
that high levels of TNF-α in LVAD patients induce pericyte
apoptosis, decrease Ang-1 expression, induce endothelial
TF and Ang-2 expression, and promote altered angio-
genesis.
Methods

Study subjects

We performed a cross-sectional study of patients with an LVAD
(HeartMate II or HVAD), patients with heart failure (HF) with
reduced ejection fraction without an LVAD, and patients with a
history of orthotopic heart transplantation (OHT). Inclusions,
exclusions and timing of recruitment were reported previously12

and are addressed in the Supplementary Material (available online
at www.jhltonline.org/). The protocol was approved by the
institutional review board of the University of Chicago and all
participants provided written informed consent.
Cell culture

Human umbilical vein endothelial cells (HUVECs) were purchased
from Lonza (Basel, Switzerland), and human brain pericytes were
purchased from ScienCell (Carlsbad, CA). Cultures were grown to
70% confluence under standard conditions (37ºC, 5% CO2).
Measurement of effect of TNF-α and associated
molecules on vascular cells

These experiments are described in the Supplementary Material
(online).
Measurement of circulating biomarkers

TNF-α and TF were measured by enzyme-linked immunoassay
(ELISA; TNF-α: Life Technologies; TF: R&D Systems) in
platelet-poor plasma.
Assessment of effect of TNF-α on Ang-1 expression
in pericytes

Serum samples from patients with/without LVADs were diluted
1:1 with Dulbecco’s modified Eagle medium (DMEM), mixed with
TNF-α-blocking antibody (100 ng/ml; Cell Signaling) or vehicle,
and incubated at 371C for 2 hours with intermittent mixing to allow
neutralization of TNF-α. For this assay, we did not include serum
from patients with OHT, because the OHT patients in our cohort
were treated with tacrolimus, which may confound Ang-1
expression.28 After 2 hours, the mixture was pipetted onto dishes
of cultured pericytes that were incubated for an additional 4 hours.
Pericyte RNA was isolated using a PureLink RNA Mini Kit (Life
Technologies) and gene expression was measured by reverse
transcript-polymerase chain reaction (RT-PCR).

Assessment of effect of TNF-α on pericyte cell
death

Serum samples from each patient were diluted 1:1 with DMEM
and mixed with TNF-α-blocking antibody or vehicle as noted
previously. After 2 hours, the mixture was pipetted onto cultured
pericytes growing in 96-well plates, which were incubated for an
additional 12 hours. Cultures were then stained with a calcein/
ethidium viability kit (Fisher) and viability was determined on a
plate reader. To control for variation in seeding density, pericyte
death was measured as the ratio of dead/live cells in each well.

Measurement of TF expression in endothelial cells
from patients

We obtained vena caval endothelial cells from guide-wires used
during right heart catheterization and measured TF expression by
quantitative immunofluorescence, as described elsewhere.12,29–33

Expression is presented in arbitrary units (AU).12,32

Assessment of effect of TNF-α on endothelial
expression of TF and Ang-2

Plasma samples from each patient were mixed with TNF-α-
blocking antibody or vehicle as noted previously. After 2 hours, the
mixture was pipetted onto dishes of cultured HUVECs, which were
incubated for an additional 4 hours. HUVEC RNA was isolated as
noted previously and gene expression was measured by RT-PCR.

Assessment of angiogenic potential of patients’
serum

Serum samples from each patient were diluted 1:1 with culture
medium as described elsewhere12 and mixed with TNF-α-blocking
antibody or vehicle, as noted previously. Then 24-well plates
(Falcon) were coated with Matrigel (Corning) and solidified. Next,
200,000 HUVECs were resuspended in the serum/medium mixture
from each patient. This mixture was pipetted into the Matrigel-
coated wells and incubated overnight. Microtube formation was
assessed by microscopy.34

Assessment of Rho kinase activity

Previous studies have shown other inflammatory factors besides
TNF-α may be elevated after LVAD implantation.23 We therefore
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hypothesized that Rho kinase (ROCK) may also be elevated. We
measured ROCK activity in these patients using a method we
described in a previous study.35 Briefly, leukocytes were isolated
from blood, protein was extracted, and ROCK activity was
measured by Western blot.

Measurement of non-surgical bleeding outcomes

Patients were monitored for NSB events for 1 year after sample
collection, or until they received an OHT or died (if within 1 year).
NSB was defined as gastrointestinal bleeding, intracranial
hemorrhage or epistaxis, as previously described.12

Statistical analyses

Data were analyzed using SPSS version 23.0 (IBM SPSS). Continuous
variables were compared between cohorts using the Mann–Whitney U-
test or Kruskal–Wallis test, followed by pairwise post-hoc comparisons
using the Mann–Whitney U-test with Bonferroni’s adjustment when
positive. Treatment conditions were compared within cohorts using
Wilcoxon’s signed-rank test. Categorical variables were compared
using Fisher’s exact test. Kaplan–Meier distributions were compared
using the log-rank test. Data are presented as mean � standard
deviation unless otherwise indicated. A 2-sided p o 0.05 was
considered statistically significant.

Results

We enrolled 32 patients with HF, 44 patients with LVADs and
25 patients with OHT. Clinical characteristics are shown in
Table 1 and Tables S1 to S4 (see Supplementary Material).

Elevated circulating TNF-α in plasma from LVAD
patients

We measured TNF-α in platelet-poor plasma. TNF-α was
significantly higher in patients with LVADs compared with
Table 1 Clinical Characteristics

HF

Number of participants 32
Age (years) 62.8 � 11.9
Female (%) 31
Black race (%) 34
Left ventricular ejection fraction (%) 27.3 � 9.1
Days post-implant (median) —

eGFR (ml/min/1.73 m2) 68.7�20.6
NYHA HF Class (%)

1 3
2 22
3 69
4 0

Pulse pressure (mm Hg) 49.6 � 15.7
Statin (%) 44
Warfarin (%) 44
ACE-I/ARB (%) 84
Anti-platelets (%) 53

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor b
left ventricular assist device; OHT, orthotopic heart transplantation.
HF or OHT patients (5.97 � 4.42, 3.61 � 3.31 and 3.05 �
3.64 pg/ml, respectively; omnibus, p o 0.01; HF vs LVAD,
p o 0.05; LVAD vs OHT, p o 0.05; HF vs OHT, p ¼ not
statistically significant [NS]).
Elevated TNF-α in serum from LVAD patients
suppresses Ang-1 gene expression and induces
pericyte death

To determine whether elevated TNF-α in LVAD patients
could suppress Ang-1 expression in pericytes, we
incubated cultured pericytes with serum from patients
with/without LVADs. Ang-1 gene expression was sig-
nificantly lower in cultures incubated with serum from
LVAD patients compared with HF (0.63 � 0.09 vs 0.75
� 0.12 relative quantity (RQ), p o 0.05; Figure 1). This
effect in the LVAD group was blunted by TNF-α
blockade (0.80 � 0.09 RQ, p o 0.01), whereas a non-
significant increase was observed in the HF group (0.79 �
0.09, p ¼ NS).

To investigate whether elevated TNF-α in LVAD
patients could induce pericyte death, we incubated cultured
pericytes with serum from patients with/without LVADs.
Pericyte death was significantly higher in cultures treated
with serum from LVAD patients compared with HF or OHT
patients (10.21 � 5.90, 5.27 � 7.03 and 5.76 � 6.00 AU,
respectively; omnibus, p o 0.01; HF vs LVAD, p o 0.05;
LVAD vs OHT, p o 0.01; HF vs OHT, p ¼ NS; Figure 2)
and this effect in the LVAD group was blunted by TNF-α
blockade (6.91 � 4.99 AU, p o 0.001). No significant
difference was observed in the HF or OHT groups with
TNF-α blockade (5.99 � 5.44 and 4.34 � 5.01 AU,
respectively, p ¼ NS). Together, these findings suggest high
levels of TNF-α in LVAD patients suppress Ang-1
expression and induce pericyte death.
LVAD OHT p-value

44 25
58.8 � 10.7 54.1 � 10.9 0.016
27 24 0.829
41 32 0.422
— 59.6 � 8.4 o0.001
295.0 � 479.2 311.0 � 1,257.9 0.1
59.6 � 24.5 65.8 � 21.9 0.208

o0.001
9 —

70 —

21 —

0 —

29.8 � 8.8 47.0 � 9.7 o0.001
59 96 o0.001
93 4 o0.001
46 12 o0.001
90 52 o0.001

locker; eGFR, estimated glomerular filtration rate; HF, heart failure; LVAD,
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Figure 1 High TNF-α in serum from patients with LVADs
suppresses Ang-1 expression in cultured pericytes. Cultured
pericytes were incubated with serum from patients with HF or
LVAD in the presence/absence of TNF-α–blocking antibody.
Serum from LVAD patients suppressed Ang-1 expression in the
cultured pericytes compared with serum from HF patients and this
effect was rescued with TNF-α blockade.
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Elevated TF protein expression in plasma and
endothelial cells from LVAD patients

We measured TF in platelet-poor plasma. TF was
significantly higher in the LVAD cohort compared with
the HF cohort and trended higher than the OHT cohort
(40.92 � 11.91, 31.74 � 12.59 and 33.46 � 7.47 pg/ml,
respectively; omnibus, p o 0.01; HF vs LVAD, p o 0.01;
LVAD vs OHT, p ¼ 0.118, HF vs OHT, p ¼ NS).
To determine the source of the elevated TF in LVAD
patients, we analyzed endothelial cells from patients with/
without LVADs. TF protein expression in these cells was
higher in patients with LVADs compared with HF or OHT
patients (6.25 � 3.94, 1.95 � 1.37 and 2.51 � 2.36 AU,
respectively; omnibus, p o 0.01; HF vs LVAD, p o 0.05;
LVAD vs OHT, p o 0.05; HF vs OHT, p ¼ NS; Figure 3).
These findings suggest overexpression of TF in the
endothelium may elevate circulating TF levels in LVAD
patients.
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Figure 2 High TNF-α in serum from patients with LVADs induces
from patients with HF, LVAD or OHT in the presence or absence of a TN
viability kit. Cell death was measured as the ratio between live (green) and
treated with serum from LVAD patients, and this effect was blunted by
Elevated TNF-α in plasma from LVAD patients
increases endothelial expression of TF and Ang-2

To determine whether increased TNF-α in plasma from
LVAD patients could drive expression of TF and Ang-2, we
incubated HUVECs with plasma from patients with/without
LVADs. Plasma from LVAD patients induced higher TF
gene expression than plasma from patients with HF or OHT
(5.38 � 4.2, 1.52 � 0.96 and 2.03 � 1.49 RQ, respectively;
omnibus, p o 0.01; HF vs LVAD, p o 0.01; LVAD vs
OHT, p o 0.05; HF vs OHT, p ¼ NS; Figure 4). In the
LVAD cohort, TF expression was significantly reduced with
TNF-α blockade (2.88 � 1.22 RQ, p o 0.05). A non-
significant decrease was noted in cultures receiving plasma
from patients with HF or OHT (1.18 � 0.96 and 1.33 �
0.79 RQ, respectively, p ¼ NS for both). Similarly, the
plasma from LVAD patients induced higher Ang-2 gene
expression in the HUVECs compared with plasma from
patients with HF or OHT (6.19 � 0.45, 5.02 � 0.32 and
4.92 � 0.30 RQ, respectively; omnibus, p o 0.01; HF vs
LVAD, p o 0.01; LVAD vs OHT, p o 0.01; HF vs OHT,
p ¼ NS). In all cohorts, Ang-2 expression was reduced with
TNF-α blockade (4.88� 0.34, 3.84� 0.49 and 3.83� 0.41
RQ, respectively, p o 0.01 for all comparisons).
Together, these data suggest elevated TNF-α in plasma
from LVAD patients induces endothelial expression of both
TF and Ang-2.
Elevated TNF-α in serum from LVAD patients
induces angiogenesis

To determine whether TNF-α in serum from LVAD patients
contributes to endothelial tube formation, we incubated
HUVECs on Matrigel with serum from patients with/without
LVADs. Serum from LVAD patients induced more tubule
formation than serum from patients with HF or OHT (29.52
� 7.06, 22.00� 6.94 and 20.92� 8.14 tubes per low-power
field, respectively; omnibus, p o 0.01; HF vs LVAD,
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pericyte cell death. Cultured pericytes were incubated with serum
F-α–blocking antibody. Viability was assessed using a fluorescent
dead (red) cells. Pericyte death was significantly higher in cultures
TNF-α blockade.
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Figure 3 Endothelial TF expression is elevated in LVAD patients. TF protein expression in freshly isolated endothelial cells from patients
with HF, LVAD or OHT was analyzed by quantitative immunofluorescence. TF expression was significantly higher in endothelial cells from
LVAD patients compared with HF or OHT patients.
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p o 0.05; LVAD vs OHT, p o 0.01; HF vs OHT,
p ¼ NS; Figure 5A and B). This effect was blunted in LVAD
patients by TNF-α blockade (26.42 � 6.83, p o 0.05),
indicating elevated TNF-α in the serum from LVAD patients
contributed to tubule formation. No significant difference was
observed in the HF or OHT groups in response to TNF-α
blockade (22.07 � 3.69 and 21.50� 9.37, p ¼ NS for both).
Synergic effect of TNF-α and associated molecules
on vascular cell motility and survival

In the Supplementary Material, we confirm the synergic
roles of TNF-α, thrombin and Ang-2 in regulating
TF expression (Figure S1), angiogenesis (Figure S2),
Ang-1 expression (Figure S3) and apoptosis (Figures S4
through S6).
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Figure 4 High TNF-α in plasma from patients with LVADs
induces endothelial TF expression. Cultured HUVECs were
incubated with plasma from patients with HF, LVAD or OHT in
the presence or absence of a TNF-α–blocking antibody. Tissue factor
gene expression was measured by RT-PCR. Plasma from LVAD
patients induced more TF gene expression than plasma from HF or
OHT patients, and this effect was blunted by TNF-α blockade.
Elevated TNF-α in LVAD patients is strongly
associated with increased risk of non-surgical
bleeding

To determine whether TNF-α predicts NSB events in LVAD
patients, we reviewed the medical records of LVAD patients
in this study. Within 1 year of sample collection, 11 patients
had NSB, defined as previously reported.12 Patients who
bled within 1 year had significantly higher TNF-α levels
than non-bleeders (7.9 � 1.9 and 5.3 � 4.9 pg/ml,
respectively, p o 0.01). Among LVAD patients with
TNF-α levels above the mean, 48% had NSB within 1 year
of sample collection (n ¼ 10 of 21) compared with 4% (n ¼
1 of 23) in patients with TNF-α below the mean (p o 0.01).
Among LVAD patients with both TNF-α and Ang-2 above
the mean, 67% had NSB within 1 year (n ¼ 6 of 9)
compared with 14% (n ¼ 5 of 35) in patients with 1 or both
biomarkers below the mean (p o 0.01). The Kaplan–Meier
distributions are shown in Figure 6 and Figure S7.

Elevated ROCK activity in LVAD patients

We measured ROCK activity in patients with/without
LVADs. As shown in Figure 7, ROCK activity was
significantly higher in LVAD patients compared with HF
or OHT (2.26 � 1.77, 1.19 � 1.01 and 1.02 � 0.77 RQ,
respectively; omnibus, p o 0.01; HF vs LVAD, p o 0.05;
LVAD vs OHT, p o 0.05; HF vs OHT, p ¼ NS).

Discussion

In this study we have evaluated the role of TNF-α in
promoting vascular destabilization in LVAD patients. We
found that high levels of TNF-α induced pericyte apoptosis
and suppressed Ang-1 expression. Endothelial TF expres-
sion is higher in LVAD patients and high levels of TNF-α
induce TF expression in endothelial cells. We previously
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Figure 5 High TNF-α in serum from patients with LVADs induces angiogenesis in human endothelium. HUVECs were assayed on
Matrigel with serum from patients with HF, LVAD or OHT in the presence or absence of a TNF-α-blocking antibody. Tube formation was
significantly higher in cultures treated with serum from LVAD patients, and this effect was blunted by TNF-α blockade.
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found that high levels of thrombin in LVAD patients drive
endothelial Ang-2 expression,12 and the present findings
show a contributing mechanism behind thrombin elevation
and Ang-1 loss in these patients. Further, high levels of
Figure 6 High TNF-α is associated with increased risk of NSB
in LVAD patients. Patients in the LVAD cohort were followed
prospectively for 1 year (or until death or OHT if these occurred
within 1 year of sample collection) and incidence of NSB was
recorded. The rate of NSB was significantly higher among LVAD
patients with TNF-α above the mean.
TNF-α in LVAD patients increase angiogenesis in vitro
similarly to Ang-2,12 and TNF-α drives Ang-2 expression.
The data suggest there is a synergic effect of TNF-α/Ang-2
on endothelial inflammation16 and abnormal angiogenesis,
as described in tissue culture36 and mouse models,15 which
likely drives angiodysplasia and vascular instability in
LVAD patients. These findings are accompanied by
elevation of ROCK activity, a mediator of endothelial
inflammation,37 also associated with vascular instability.38

Finally, we found that high TNF-α could increase the risk of
NSB while elevation of both TNF-α and Ang-2 together
further compounds this risk. Therefore, we propose TNF-α
may be a central regulator of LVAD-related angiodysplasia
(Figure 8).

Our findings highlight the relationship among inflamma-
tory, coagulation and angiogenic systems and LVAD-
related angiodysplasia and help to explain the decrease
in Ang-1 we observed.12 Ang-1 maintains vascular stability,
and a low Ang-1/Ang-2 ratio leads to vascular inflamma-
tion and is associated with vascular malformations39 and
gastrointestinal angiodysplasia.40 Histologically, angiodys-
plasia is associated with endothelial proliferation and
pericyte loss.3,4 Studies have suggested TNF-α/Ang-2
synergy leads to pericyte apoptosis.13,41 Herein we found
TNF-α–induced pericyte apoptosis in LVAD patients is
associated with suppression of Ang-1, which is blunted by
TNF-α blockade.
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Figure 7 ROCK activity is elevated in LVAD patients. Leukocyte ROCK activity was measured by Western blot as the ratio between
phospho-myosin binding subunit (pMBS) and total myosin binding subunit (tMBS). ROCK activity was higher in LVAD patients than in HF
or OHT patients.
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Studies in tissue culture36 and animal models15 have
described synergic angiogenic effects of TNF-α/Ang-2.
TNF-α primes sprouting endothelial tip cells to receive
angiogenic signals42 and regulates vascular remodeling.43

Diseases with high TNF-α, such as rheumatoid arthritis, are
associated with pathologic angiogenesis,44 which recedes
with anti-TNF-α therapy.45 Notably, the angiogenic effect of
TNF-α appears paradoxical: escalating doses of TNF-α
induce more vessel growth until a boundary is reached,
where the effect is abolished and toxicity follows.36,46 In
this study, we have confirmed TNF-α elevation in plasma
from LVAD patients,21–25 and we have extended this
knowledge by demonstrating that TNF-α induces pericyte
apoptosis, suppresses Ang-1, drives angiogenesis, and may
increase NSB synergically with Ang-2. Therefore, TNF-α/
Ang-2 inhibition may help prevent or treat angiodysplasia in
LVAD patients. Indeed, this approach prevents pathologic
angiogenesis in mice.15 Studies have reported on the
efficacy of thalidomide in treating LVAD-related
NSB.47,48 As thalidomide inhibits TNF-α,49–52 our findings
Thrombin genera�on

Ang-2 expression

Endothelial prolifera�on

Decreased Ang-1 expression

Angiodysplasia

Pericyte death

Endothelial destabiliza�on

TNF-α

Tissue Factor expression

Figure 8 Proposed model of TNF-α as a central regulator of
LVAD-related angiodysplasia. TNF-α induces endothelial TF
expression, which generates thrombin, which in turn induces
endothelial Ang-2 expression. TNF-α also directly stimulates Ang-
2 expression. Together, TNF-α and Ang-2 promote endothelial
proliferation. TNF-α also induces pericyte apoptosis/death, which
leads to decreased Ang-1 expression and endothelial destabiliza-
tion, which is augmented by Ang-2 and thrombin. Together,
endothelial proliferation and destabilization and loss of pericyte
coverage lead to angiodysplasia.
suggest TNF-α inhibition may explain thalidomide’s
efficacy.

High levels of thrombin in LVAD patients contribute to
Ang-2 overexpression.12 Herein we have confirmed TF
elevation in LVAD patients26 and extend this knowledge by
demonstrating that TF expression is higher in endothelium
of LVAD patients and high levels of TNF-α induce
endothelial TF expression. In addition to contact coagu-
lation system activation, as described in our earlier work12

and in another study,53 the synergic effect of TNF-α/
thrombin on endothelial TF expression18–20 likely creates a
feed-forward response in LVAD patients, producing
thrombin and leading to overexpression of Ang-2. TNF-α
also induces Ang-2 expression independently of thrombin,17

highlighting the synergy among these factors.
Literature reporting the effect of LVADs on TNF-α is

conflicting. In paired analyses (pre- and post-LVAD),
myocardial TNF-α decreases after LVAD implantation,54

whereas LVAD patients have higher plasma levels of TNF-α
compared with similar HF patients.21–25 We speculate that
differences between control groups could explain these
discrepancies; patients awaiting LVAD are often very sick
and therefore may have high TNF-α levels,55 which are
reduced by LVAD placement, whereas ambulatory HF patients
who are functionally similar to LVAD patients may have lower
TNF-α. Still, the source of TNF-α in LVAD patients remains
unclear. Leukocyte activation by the LVAD,56 loss of laminar/
pulsatile flow57 and decreased gastrointestinal perfusion58

could lead to inflammation and TNF-α release.
Our study has several limitations. Although we focused on

in-vitro TNF-α inhibition, the effect of inhibiting TNF-α in
LVAD patients is not known. It is not possible to account for
all confounding variables in human studies, but we sought to
minimize confounding with 2 well-matched control groups.
We acknowledge OHT patients are physiologically different
from LVAD patients, and the use of tacrolimus and other
immunosuppressants in these patients may confound the
analyses. Due to the cross-sectional design, changes over time
were not addressed. Although TNF-α/Ang-2 may predict future
bleeding in LVAD patients, it is not known whether there is a
window of time before blood sampling when these markers are
associated with bleeding events. Blood flow conditions differ
markedly between patients with vs without LVADs and,
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although evidence linking pulsatility and bleeding exists,59 the
effect on biomarker expression is unknown. Some patients with
diseases in which TNF-α is elevated have angiodysplasia,44 yet
others do not. Finally, although the combination of high TNF-
α/Ang-2 was associated with NSB, the relationship between
these markers and angiodysplasia was not directly addressed.

Conclusions

TNF-α is a central regulator of vascular instability and NSB
in LVAD patients and likely acts in synergy with Ang-2 and
thrombin to augment its effects. Further study is needed to
determine whether TNF-α blockade could prevent compli-
cations in LVAD patients.
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